LLM-Enhanced Constraint Programming for Task Planning in
Heterogeneous Multi-Agent Systems

Jozsef Palmieri®, Martina Lippi?, Alessandro Marino!

Abstract—Multi-agent systems (MAS) of humans and robots
are increasingly applied to complex tasks, yet face challenges in
translating natural language instructions into executable plans
and managing heterogeneous agents. Traditional planning meth-
ods provide guarantees but are rigid and knowledge-intensive,
while Large Language Models (LLMs) offer flexibility but lack
reliability. We propose a hybrid framework that integrates LLMs
with Constraint Programming (CP), combining intuitive task
decomposition with formal optimization. Simulation experiments
in object-sorting and structure-building scenarios show that our
approach delivers more feasible, efficient, and optimized plans
than LLM-only baselines, while reducing computation time. The
results highlight the value of uniting AI-based reasoning with op-
timization techniques for reliable task planning in heterogeneous
MAS.

I. INTRODUCTION

Multi-agent systems (MAS), especially those involving het-
erogeneous agents such as robots and humans (Figure 1), are
playing an increasingly critical role in addressing complex
tasks under dynamic and uncertain conditions. The reason for
this growing adoption can be attributed to their capacity to
combine the unique cognitive strengths of humans and the
physical ones of the robots, thereby enhancing productivity
and operational efficiency. Their applications span a wide
range of domains, including intelligent manufacturing, urban
search and rescue, logistics, and precision agriculture [1], [2],
[3], [4], [5]. However, within this domain, several critical
challenges remain still unresolved, including: %) the translation
of natural language instructions, frequently ambiguous and dif-
fering in their level of detail, into efficient and executable plans
for heterogeneous agents, and ¢7) the management of system
heterogeneity, which entails addressing inherent differences
in task execution. Addressing this second challenge involves
optimally allocating and scheduling activities across agents
to improve performance while meeting the given constraints.
In the last few decades, such kind of problems have been
mainly addressed using formal planning techniques capable of
producing optimal or sub-optimal solutions. Such approaches,
ranging from classical planners relying on the Planning Do-
main Definition Language (PDDL) to Constraint Programming

1J. Palmieri and A. Marino are with the Department of Electri-
cal and Information Engineering, University of Cassino and South-
ern Lazio, Via G. Di Biasio 43, Cassino, Italy,{jozsef.palmieri,
al.marino}@unicas.it.

2 M. Lippi is with the Department of Civil, Computer Science and
Aeronautical Technologies Engineering, Roma Tre University, Via della Vasca
Navale 79, Roma, Italy, {martina.lippi}@uniroma3.it.

This work was supported by Project CONCERTO-A COgNitive arChitec-
ture for sEamless human-Robot inTeractiOn, CUP H53C24001050006, funded
by EU in NextGenerationEU plan through the Italian “Bando Prin 2022 - D.D.
104 del 02-02-2022”

2

Fig. 1. Example of a multi-agent system involving both humans and
robots cooperating to achieve a common goal.

(CP) and Mixed Integer Linear Programming (MILP), provide
solid guarantees with respect to plan correctness, feasibility,
and resource allocation [6], [7]. Nonetheless, because all these
approaches rely on a strict and structured formalism, the
attainment of a complete and accurate formalization of the
scenario, that is, the representation of the problem domain,
agent capabilities, and task dependencies, requires consider-
able effort, profound domain knowledge, and advanced exper-
tise in logic and planning languages. Therefore, this reliance
can be regarded as the main bottleneck limiting the adoption
of such approaches in complex real-world scenarios. A further
limitation is the need for substantial re-engineering of the
underlying models whenever the system must be adapted to
new tasks or to accommodate unforeseen changes. Recent
advances in the Large Language Models (LLMs) field have
given rise to new paradigms in robot task planning, promoting
the development of more flexible and intuitive methodologies.
Thanks to their advanced natural language understanding,
extensive world knowledge, and high-level reasoning abilities,
LLMs are able to correctly interpret human instructions and
generate adaptive task plans [8], [9]. In particular, they can
decompose complex tasks into hierarchical structures [9],

generate plans, and manage the allocation and scheduling of
activities. Therefore, LLM-based frameworks, such as the one
proposed in [10] that translates natural language into action
sequences for embodied agents, can be regarded as powerful
and intuitive interfaces, enabling even non-expert users to
engage effectively with MAS. Although promising, LLM-
based frameworks are nonetheless subject to several important
limitations. Most importantly, the plans they generate often
lack formal correctness, feasibility, and reliability [11], [12].
Indeed, without a formalism that ensures solution correctness,
and because of their tendency to produce unreliable or “hal-
Iucinated” outputs, LLMs are prone to generating plans that
violate critical safety requirements, include actions that cannot
be carried out, or assign tasks to agents who lack the skills
or resources to perform them [13], [14]. To overcome the
inherent limitations of both formal methods and purely LLM-
based approaches, we propose a novel hybrid framework that
integrates the rigor of Constraint Programming (CP) with the
flexibility of Large Language Models (LLMs).

II. CONSTRAINT PROGRAMMING (CP)

Constraint Programming (CP) is a logic-based paradigm
originally developed for solving Constraint Satisfaction Prob-
lems (CSPs), where the objective is to assign values to
variables under predefined constraints and rules. In recent
years, however, CP has also been successfully applied to Con-
straint Optimization Problems (COPs), including timetabling,
factory scheduling, and the allocation of time or resources
to events [15][16]. A distinctive feature of CP lies in its
ability to handle a wide range of decision variables, such as
integer, continuous, and interval variables. Interval variables
are commonly employed to model temporal windows within
which events can take place. Interval variables may also be
defined as optional, indicating that they can be excluded from
the solution and thus be ignored by any constraint or expres-
sion involving them. Such variables are particularly useful for
modeling optional tasks (i.e., tasks that may not be executed)
or for representing alternatives in tasks and resources (i.e.,
cases where the same task can be performed in multiple ways).
Within CP, each decision variable is associated with a domain,
namely the set of admissible values it can assume. During the
solving process, infeasible values are systematically pruned
from these domains through an iterative mechanism known as
constraint propagation. Furthermore, CP natively supports a
broad range of constraint types, including arithmetic expres-
sions, logical disjunctions, conditional if—then rules, and global
constraints. The latter represent a special class of constraints
which, in contrast to local or primitive ones (e.g., arithmetic
expressions), are defined over a variable number of arguments.
The use of these constraints offers two main advantages.
First, they facilitate problem modeling, as they encapsulate
some of those complex logical or combinatorial concepts
commonly found in real-world scenarios (e.g., “everything
must be different” or “tasks must not overlap™). Second, each
of them comes with a specialized filtering algorithm capable
of pruning the search space far more effectively than would

occur if the same constraint were implemented using dozens
or even hundreds of local (primitive) constraints. More details
on CP can be found in [17].

III. PROBLEM FORMULATION AND
PROPOSED SOLUTION

Building on the above considerations, we are now ready to
introduce the main problem addressed in this work.

Problem 1. Let us consider a heterogeneous multi-agent
system composed of human and robotic agents, each endowed
with distinct skills and located in a specific place. In addition,
let us assume that a set of resources (e.g., raw materials
for mixture preparation or for the construction of objects
and structures) is available in the shared workspace, each
characterized by distinctive properties. Finally, let us suppose
the availability of a high-level instruction, expressed in natural
language, outlining the scenario, the team, and the mission to
be achieved. The objective is twofold:

1) to derive all required tasks and their physical (e.g.,
object properties, tools) and temporal (e.g., precedence)
constraints;

2) to compute the optimal allocation and scheduling of ac-
tivities to complete the mission while minimizing a cost
function that balances robotic energy, human workload,
and overall makespan, under all execution constraints.

Mission text
description

- Task
specifications T
LLM/ . - Order levels

- Objects
selection
- Task allocation
- Task scheduling

Al Reasoner/
Al Grounder

CP Optimizer

Scene text
description

Fig. 2. Proposed architecture.

Figure 2 shows the proposed architecture for solving Prob-
lem 1. In particular, it is a two-layer architecture that combines
the rigor of constraint programming with the flexibility of
LLMs. The first layer, based on an LLM, leverages its world
knowledge, reasoning capabilities, and grounding mechanisms
to transform the given natural language scenario description
into a structured and ordered sequence of subtasks. The
second layer, by contrast, builds on a CP solver to handle
the complex tasks of combinatorial optimization and correct-
ness verification. Specifically, it translates the structured plan
produced by the first layer into a Constraint Programming
formulation and ensures that the resulting plan is logically
consistent, feasible, and optimized with respect to the defined
performance metrics. We validated our framework against a
purely LLM-based approach in a multi-agent blocksworld-
inspired scenario, showing that the proposed method markedly

enhances plan reliability, feasibility, and optimality, while
retaining the natural language flexibility and generalization
capabilities of LLMs.

The proposed framework was validated through several
simulation experiments. More in detail, The validation process
addressed two representative case studies: object sorting and
structure construction. The first required allocating objects
into boxes subject to predefined constraints, whereas the
second involved arranging them on a grid to replicate target
structures with minimal resource utilization. The assessment
of performance was conducted in terms of solution quality,
computational efficiency, and feasibility. The obtained findings
corroborated the effectiveness of the proposed framework.
In particular, they highlighted that the proposed framework
is able to generate feasible solutions with lower objective
function values, reduced makespan, and decreased energy
consumption, while also achieving the lowest computation
times across all experiments. In contrast, the baseline method
exhibited higher error rates, longer computation times, and a
lower proportion of feasible solutions. Overall, these results
demonstrate the effectiveness of the proposed approach and
emphasize the value of integrating optimization techniques
with Al-based reasoning for the management of complex tasks.

REFERENCES

[1] S. Kumar, C. Savur, and F. Sahin, “Survey of human—robot collaboration
in industrial settings: Awareness, intelligence, and compliance,” IEEE
Trans. Syst. Man Cybern.: Syst., vol. 51, no. 1, pp. 280-297, 2021.

[2] F. A. Cheein, D. Herrera, J. Gimenez, R. Carelli, M. Torres-Torriti,
J. R. Rosell-Polo, A. Escola, and J. Arnd, “Human-robot interaction
in precision agriculture: Sharing the workspace with service units,” in
IEEE Int. Conf. Ind. Technol., 2015, pp. 289-295.

[3] M. Lippi and A. Marino, “Human multi-robot physical interaction: a
distributed framework,” J. Intell. Robot. Syst., vol. 101, no. 2, p. 35,
2021.

[4] R. Maderna, M. Poggiali, A. M. Zanchettin, and P. Rocco, “An online
scheduling algorithm for human-robot collaborative kitting,” in /EEE
Int. Conf. Robot. Autom., 2020, pp. 11430-11435.

[5] S. Ramadurai and H. Jeong, “Effect of human involvement on work
performance and fluency in human-robot collaboration for recycling,” in
ACM/IEEE Int. Conf. Human-Robot Interaction, 2022, pp. 1007-1011.

[6] K. Obata, T. Aoki, T. Horii, T. Taniguchi, and T. Nagai, “LiP-
LLM: Integrating Linear Programming and dependency graph with
Large Language Models for multi-robot task planning,” arXiv preprint
arXiv:2410.21040, 2024.

[7]1 S. Bezrucav, Y. Liu, and B. Corves, “Optimization-based or ai task
planning for scenarios with cooperating mobile manipulators?” in Pro-
ceedings of the 18th International Conference on Informatics in Control,
Automation and Robotics - ICINCO, INSTICC. SciTePress, 2021, pp.
115-122.

[8] S.S. Kannan, V. L. N. Venkatesh, and B.-C. Min, “SMART-LLM: Smart
multi-agent robot task planning using large language models,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS). 1EEE,
2024.

[91 P. Gupta, D. Isele, B. Dariush, E. Sachdeva, P.-H. Huang, S. Bae,
and K. Lee, “Generalized Mission Planning for Heterogeneous Multi-
Robot Teams via LLM-constructed Hierarchical Trees,” arXiv preprint
arXiv:2501.16539, 2025, v1.

[10] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and
Y. Su, “Llm-planner: Few-shot grounded planning for embodied agents
with large language models,” 2023.

[11] 1. Obi, V. L. Venkatesh, W. Wang, R. Wang, D. Suh, T. I. Amosa,
W. Jo, and B.-C. Min, “SafePlan: Leveraging Formal Logic and Chain-
of-Thought Reasoning for Enhanced Safety in LLM-based Robotic Task
Planning,” arXiv preprint arXiv:2503.06892, 2025.

[12] Z. Zhou, K. Yao, J. Song, Z. Shu, and L. Ma, “ISR-LLM: Iterative
Self-Refined Large Language Model for Long-Horizon Sequential Task
Planning,” arXiv preprint arXiv:2308.13724, 2023, v1.

[13] J. Huang, R. Wang, J. Li, and M. Yang, “A survey on zero-shot planners
with large language models,” in International Conference on Machine
Learning, 2022.

[14] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824-24 837, 2022.

[15] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling:
applying constraint programming to scheduling problems. Springer
Science & Business Media, 2001, vol. 39.

[16] Y. Bukchin and T. Raviv, “Constraint programming for solving various
assembly line balancing problems,” Omega, vol. 78, pp. 57-68, 2018.

[17] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Program-
ming. USA: Elsevier Science Inc., 2006.

