
LLM-Enhanced Constraint Programming for Task Planning in

Heterogeneous Multi-Agent Systems

Jozsef Palmieri1, Martina Lippi2, Alessandro Marino1

Abstract—Multi-agent systems (MAS) of humans and robots
are increasingly applied to complex tasks, yet face challenges in
translating natural language instructions into executable plans
and managing heterogeneous agents. Traditional planning meth-
ods provide guarantees but are rigid and knowledge-intensive,
while Large Language Models (LLMs) offer flexibility but lack
reliability. We propose a hybrid framework that integrates LLMs
with Constraint Programming (CP), combining intuitive task
decomposition with formal optimization. Simulation experiments
in object-sorting and structure-building scenarios show that our
approach delivers more feasible, efficient, and optimized plans
than LLM-only baselines, while reducing computation time. The
results highlight the value of uniting AI-based reasoning with op-
timization techniques for reliable task planning in heterogeneous
MAS.

I. INTRODUCTION

Multi-agent systems (MAS), especially those involving het-

erogeneous agents such as robots and humans (Figure 1), are

playing an increasingly critical role in addressing complex

tasks under dynamic and uncertain conditions. The reason for

this growing adoption can be attributed to their capacity to

combine the unique cognitive strengths of humans and the

physical ones of the robots, thereby enhancing productivity

and operational efficiency. Their applications span a wide

range of domains, including intelligent manufacturing, urban

search and rescue, logistics, and precision agriculture [1], [2],

[3], [4], [5]. However, within this domain, several critical

challenges remain still unresolved, including: i) the translation

of natural language instructions, frequently ambiguous and dif-

fering in their level of detail, into efficient and executable plans

for heterogeneous agents, and ii) the management of system

heterogeneity, which entails addressing inherent differences

in task execution. Addressing this second challenge involves

optimally allocating and scheduling activities across agents

to improve performance while meeting the given constraints.

In the last few decades, such kind of problems have been

mainly addressed using formal planning techniques capable of

producing optimal or sub-optimal solutions. Such approaches,

ranging from classical planners relying on the Planning Do-

main Definition Language (PDDL) to Constraint Programming

1J. Palmieri and A. Marino are with the Department of Electri-
cal and Information Engineering, University of Cassino and South-
ern Lazio, Via G. Di Biasio 43, Cassino, Italy,{jozsef.palmieri,
al.marino}@unicas.it.

2 M. Lippi is with the Department of Civil, Computer Science and
Aeronautical Technologies Engineering, Roma Tre University, Via della Vasca
Navale 79, Roma, Italy, {martina.lippi}@uniroma3.it.

This work was supported by Project CONCERTO-A COgNitive arChitec-
ture for sEamless human-Robot inTeractiOn, CUP H53C24001050006, funded
by EU in NextGenerationEU plan through the Italian “Bando Prin 2022 - D.D.
104 del 02-02-2022”

Fig. 1. Example of a multi-agent system involving both humans and
robots cooperating to achieve a common goal.

(CP) and Mixed Integer Linear Programming (MILP), provide

solid guarantees with respect to plan correctness, feasibility,

and resource allocation [6], [7]. Nonetheless, because all these

approaches rely on a strict and structured formalism, the

attainment of a complete and accurate formalization of the

scenario, that is, the representation of the problem domain,

agent capabilities, and task dependencies, requires consider-

able effort, profound domain knowledge, and advanced exper-

tise in logic and planning languages. Therefore, this reliance

can be regarded as the main bottleneck limiting the adoption

of such approaches in complex real-world scenarios. A further

limitation is the need for substantial re-engineering of the

underlying models whenever the system must be adapted to

new tasks or to accommodate unforeseen changes. Recent

advances in the Large Language Models (LLMs) field have

given rise to new paradigms in robot task planning, promoting

the development of more flexible and intuitive methodologies.

Thanks to their advanced natural language understanding,

extensive world knowledge, and high-level reasoning abilities,

LLMs are able to correctly interpret human instructions and

generate adaptive task plans [8], [9]. In particular, they can

decompose complex tasks into hierarchical structures [9],



generate plans, and manage the allocation and scheduling of

activities. Therefore, LLM-based frameworks, such as the one

proposed in [10] that translates natural language into action

sequences for embodied agents, can be regarded as powerful

and intuitive interfaces, enabling even non-expert users to

engage effectively with MAS. Although promising, LLM-

based frameworks are nonetheless subject to several important

limitations. Most importantly, the plans they generate often

lack formal correctness, feasibility, and reliability [11], [12].

Indeed, without a formalism that ensures solution correctness,

and because of their tendency to produce unreliable or “hal-

lucinated” outputs, LLMs are prone to generating plans that

violate critical safety requirements, include actions that cannot

be carried out, or assign tasks to agents who lack the skills

or resources to perform them [13], [14]. To overcome the

inherent limitations of both formal methods and purely LLM-

based approaches, we propose a novel hybrid framework that

integrates the rigor of Constraint Programming (CP) with the

flexibility of Large Language Models (LLMs).

II. CONSTRAINT PROGRAMMING (CP)

Constraint Programming (CP) is a logic-based paradigm

originally developed for solving Constraint Satisfaction Prob-

lems (CSPs), where the objective is to assign values to

variables under predefined constraints and rules. In recent

years, however, CP has also been successfully applied to Con-

straint Optimization Problems (COPs), including timetabling,

factory scheduling, and the allocation of time or resources

to events [15][16]. A distinctive feature of CP lies in its

ability to handle a wide range of decision variables, such as

integer, continuous, and interval variables. Interval variables

are commonly employed to model temporal windows within

which events can take place. Interval variables may also be

defined as optional, indicating that they can be excluded from

the solution and thus be ignored by any constraint or expres-

sion involving them. Such variables are particularly useful for

modeling optional tasks (i.e., tasks that may not be executed)

or for representing alternatives in tasks and resources (i.e.,

cases where the same task can be performed in multiple ways).

Within CP, each decision variable is associated with a domain,

namely the set of admissible values it can assume. During the

solving process, infeasible values are systematically pruned

from these domains through an iterative mechanism known as

constraint propagation. Furthermore, CP natively supports a

broad range of constraint types, including arithmetic expres-

sions, logical disjunctions, conditional if–then rules, and global

constraints. The latter represent a special class of constraints

which, in contrast to local or primitive ones (e.g., arithmetic

expressions), are defined over a variable number of arguments.

The use of these constraints offers two main advantages.

First, they facilitate problem modeling, as they encapsulate

some of those complex logical or combinatorial concepts

commonly found in real-world scenarios (e.g., ”everything

must be different” or ”tasks must not overlap”). Second, each

of them comes with a specialized filtering algorithm capable

of pruning the search space far more effectively than would

occur if the same constraint were implemented using dozens

or even hundreds of local (primitive) constraints. More details

on CP can be found in [17].

III. PROBLEM FORMULATION AND

PROPOSED SOLUTION

Building on the above considerations, we are now ready to

introduce the main problem addressed in this work.

Problem 1. Let us consider a heterogeneous multi-agent

system composed of human and robotic agents, each endowed

with distinct skills and located in a specific place. In addition,

let us assume that a set of resources (e.g., raw materials

for mixture preparation or for the construction of objects

and structures) is available in the shared workspace, each

characterized by distinctive properties. Finally, let us suppose

the availability of a high-level instruction, expressed in natural

language, outlining the scenario, the team, and the mission to

be achieved. The objective is twofold:

1) to derive all required tasks and their physical (e.g.,

object properties, tools) and temporal (e.g., precedence)

constraints;

2) to compute the optimal allocation and scheduling of ac-

tivities to complete the mission while minimizing a cost

function that balances robotic energy, human workload,

and overall makespan, under all execution constraints.

Fig. 2. Proposed architecture.

Figure 2 shows the proposed architecture for solving Prob-

lem 1. In particular, it is a two-layer architecture that combines

the rigor of constraint programming with the flexibility of

LLMs. The first layer, based on an LLM, leverages its world

knowledge, reasoning capabilities, and grounding mechanisms

to transform the given natural language scenario description

into a structured and ordered sequence of subtasks. The

second layer, by contrast, builds on a CP solver to handle

the complex tasks of combinatorial optimization and correct-

ness verification. Specifically, it translates the structured plan

produced by the first layer into a Constraint Programming

formulation and ensures that the resulting plan is logically

consistent, feasible, and optimized with respect to the defined

performance metrics. We validated our framework against a

purely LLM-based approach in a multi-agent blocksworld-

inspired scenario, showing that the proposed method markedly



enhances plan reliability, feasibility, and optimality, while

retaining the natural language flexibility and generalization

capabilities of LLMs.

The proposed framework was validated through several

simulation experiments. More in detail, The validation process

addressed two representative case studies: object sorting and

structure construction. The first required allocating objects

into boxes subject to predefined constraints, whereas the

second involved arranging them on a grid to replicate target

structures with minimal resource utilization. The assessment

of performance was conducted in terms of solution quality,

computational efficiency, and feasibility. The obtained findings

corroborated the effectiveness of the proposed framework.

In particular, they highlighted that the proposed framework

is able to generate feasible solutions with lower objective

function values, reduced makespan, and decreased energy

consumption, while also achieving the lowest computation

times across all experiments. In contrast, the baseline method

exhibited higher error rates, longer computation times, and a

lower proportion of feasible solutions. Overall, these results

demonstrate the effectiveness of the proposed approach and

emphasize the value of integrating optimization techniques

with AI-based reasoning for the management of complex tasks.

REFERENCES

[1] S. Kumar, C. Savur, and F. Sahin, “Survey of human–robot collaboration
in industrial settings: Awareness, intelligence, and compliance,” IEEE

Trans. Syst. Man Cybern.: Syst., vol. 51, no. 1, pp. 280–297, 2021.

[2] F. A. Cheein, D. Herrera, J. Gimenez, R. Carelli, M. Torres-Torriti,
J. R. Rosell-Polo, A. Escolà, and J. Arnó, “Human-robot interaction
in precision agriculture: Sharing the workspace with service units,” in
IEEE Int. Conf. Ind. Technol., 2015, pp. 289–295.

[3] M. Lippi and A. Marino, “Human multi-robot physical interaction: a
distributed framework,” J. Intell. Robot. Syst., vol. 101, no. 2, p. 35,
2021.

[4] R. Maderna, M. Poggiali, A. M. Zanchettin, and P. Rocco, “An online
scheduling algorithm for human-robot collaborative kitting,” in IEEE

Int. Conf. Robot. Autom., 2020, pp. 11 430–11 435.

[5] S. Ramadurai and H. Jeong, “Effect of human involvement on work
performance and fluency in human-robot collaboration for recycling,” in
ACM/IEEE Int. Conf. Human-Robot Interaction, 2022, pp. 1007–1011.

[6] K. Obata, T. Aoki, T. Horii, T. Taniguchi, and T. Nagai, “LiP-
LLM: Integrating Linear Programming and dependency graph with
Large Language Models for multi-robot task planning,” arXiv preprint

arXiv:2410.21040, 2024.

[7] S. Bezrucav, Y. Liu, and B. Corves, “Optimization-based or ai task
planning for scenarios with cooperating mobile manipulators?” in Pro-

ceedings of the 18th International Conference on Informatics in Control,

Automation and Robotics - ICINCO, INSTICC. SciTePress, 2021, pp.
115–122.

[8] S. S. Kannan, V. L. N. Venkatesh, and B.-C. Min, “SMART-LLM: Smart
multi-agent robot task planning using large language models,” in Proc.

IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS). IEEE,
2024.

[9] P. Gupta, D. Isele, B. Dariush, E. Sachdeva, P.-H. Huang, S. Bae,
and K. Lee, “Generalized Mission Planning for Heterogeneous Multi-
Robot Teams via LLM-constructed Hierarchical Trees,” arXiv preprint

arXiv:2501.16539, 2025, v1.

[10] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and
Y. Su, “Llm-planner: Few-shot grounded planning for embodied agents
with large language models,” 2023.

[11] I. Obi, V. L. Venkatesh, W. Wang, R. Wang, D. Suh, T. I. Amosa,
W. Jo, and B.-C. Min, “SafePlan: Leveraging Formal Logic and Chain-
of-Thought Reasoning for Enhanced Safety in LLM-based Robotic Task
Planning,” arXiv preprint arXiv:2503.06892, 2025.

[12] Z. Zhou, K. Yao, J. Song, Z. Shu, and L. Ma, “ISR-LLM: Iterative
Self-Refined Large Language Model for Long-Horizon Sequential Task
Planning,” arXiv preprint arXiv:2308.13724, 2023, v1.

[13] J. Huang, R. Wang, J. Li, and M. Yang, “A survey on zero-shot planners
with large language models,” in International Conference on Machine

Learning, 2022.
[14] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,

D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[15] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling:

applying constraint programming to scheduling problems. Springer
Science & Business Media, 2001, vol. 39.

[16] Y. Bukchin and T. Raviv, “Constraint programming for solving various
assembly line balancing problems,” Omega, vol. 78, pp. 57–68, 2018.

[17] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Program-

ming. USA: Elsevier Science Inc., 2006.


