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Vı́t Krátký1?, Robert Pěnička1, Parakh Manoj Gupta1, and Martin Saska1

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/cIWm7xg0upc

I. EXTENDED ABSTRACT

The deployment of Unmanned Aerial Vehicles (UAVs) in
the past decade was mostly limited to single-robot applica-
tions in an isolated operational space. However, in recent
years the development targets applications leading to numer-
ous UAVs operating in an open-air space shared with other
parties of air traffic (e.g., package delivery, area monitoring,
and precision agriculture). This brings to the forefront the
problem of mutual collision avoidance, which is one of the
key aspects of the safe deployment of robotic systems in real-
world applications where robots share an operational space.

Once the UAVs will be deployed on an everyday basis for
numerous tasks such as package delivery, they are expected
to operate in much more dense environments than, e.g.,
aeroplanes because of their limited flight altitudes and higher
density of starting and delivery locations. This makes relying
on centralized planning and scheduling impractical. In the
realm of an efficient operation of UAVs, methods that allow
collision avoidance in a high-speed agile flight are of partic-
ular interest because they allow to fully exploit the efficiency
of UAVs, including the capability of a high-speed agile flight.

The approaches tackling mutual collision avoidance in
multi-robot scenarios focus on providing theoretical guaran-
tees but neglect real-world aspects of the problem [1]–[7].
Most of these works assume unrealistic perfect control (ref-
erence tracking) [1], they often neglect the kinematic and dy-
namic constraints of the UAVs [2]–[4] or require knowledge
of the future trajectories of all other UAVs which puts high
requirements on the communication network bandwidth [5]–
[7]. Even with all these unrealistic or highly constraining
assumptions, most of these works cannot handle scenarios
with velocities exceeding 10 ms−1, which is well below the
speeds achievable by commercially available drones3.

In recent years, the major focus in field of multi-robot
collision-free trajectory planning was put on development of
decentralized methods that require the robots to share not
only current state of UAVs, but also their future planned
trajectories. Majority of these methods rely on optimization
techniques and varies in trajectory parametrization, planning
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Fig. 1: Deployment of the introduced RVC-NMPC approach in real-
world scenario with 3 UAVs navigating to antipodal positions on a
circle with radius 10 m.

methods, and methods of free space decomposition and ob-
stacle representations [5]–[14]. Some of these works bring
contribution by addressing individual aspects of the coopera-
tive navigation problem such as efficient collision resolution
in dense environments [11], robustness to communication
delays [12], perception- and uncertainty-awareness [13], or
deadlock prevention [7]. While these methods show impres-
sive results in cluttered environments, the requirements on
knowledge of the other UAVs’ states and planned trajectories
limits their use to scenarios with cooperating robots sharing
the required data and puts high demands on communication
network bandwidth. Most of these works also evaluate the re-
sults on the level of reference trajectories and do not consider
the presence of imperfect controller resulting in deviation
from provided reference.

Reactive approaches for mutual collision avoidance often
rely on representing other agents as obstacles with a sim-
plified dynamics (e.g., Velocity Obstacle (VO) [15]). The
most direct extensions of VO concept are Reciprocal Ve-
locity Obstacles (RVOs) [16], Optimal Reciprocal Collision
Avoidance (ORCA) [2], and V-RVO [17] which improves the
efficiency of collision avoidance by letting each agent take
half of the responsibility to avoid collision between coop-
erating agents. While these approaches implement collision
avoidance based on position and velocity observations only,
they neglect physical constraints of individual platforms and
expect immediate change of their velocity.

The lack of consideration of dynamic models is overcome
in several adaptations of velocity obstacles, e.g., by using
second-order dynamics [18], nonholonomic models [19], and
general linear systems [20], [21]. Some approaches overcome
the simplicity of these concepts by integrating velocity ob-
stacles or their adaptations with other frameworks such as re-
inforcement learning [22], [23] or Model Predictive Control
(MPC) [1], [24]. However, they still cannot reliably handle
simple scenarios with maximum velocities reaching 7 ms−1.
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Fig. 2: Block diagram representing a single robot control and navigation pipeline for mutual collision avoidance for agile UAV flight.

Apart from MPC-based approaches, usage of Nonlinear
Model Predictive Control (NMPC) in the context of mu-
tual collision avoidance was also already explored in liter-
ature [25], [26]. However, while NMPC enables to tackle
the nonlinearity of the controlled system and provides more
freedom for integration of mutual collision avoidance mech-
anisms directly into control problem formulation, the in-
creased complexity of the problem makes it computationally
demanding which often limits the update period and pre-
diction horizon length, and thus restricts the use of these
methods in high-speed scenarios.

To this end, we address the problem of mutual collision
avoidance by proposing a novel NMPC-based approach with
time-dependent reciprocal velocity constraints that are com-
puted only based on the current position and velocity of
the robots. In difference to future trajectories required by
state-of-the-art methods, the position and velocity can be
obtained by other UAVs through onboard sensor data [27],
[28] or through a low-bandwidth communication network,
e.g., as part of the Remote Drone ID4. Integrating these
constraints directly in a control pipeline of the UAVs ensures
proper and fast reaction to external disturbances, increases
the method’s robustness, and allows seamless integration of
dynamic constraints. Low computational demands allow all
pipeline modules to run at 100 Hz, which further facilitates
fast reaction on changes in the behavior of other UAVs
and enables efficient use of the method in high-speed sce-
narios. The proposed approach consists of several modules
that process the requested goal destination, sensor data and
eventually telemetries of other robots to generate quadrotor
control inputs that result in collision-free navigation to the
goal destination in multi-robot scenarios. The block diagram
of the pipeline is provided in Fig. 2.

The necessary inputs of the designed pipeline include sen-
sor data, which are processed by UAV State Estimator provid-
ing the estimates of the current robot’s position and velocity.
This estimate is supplied together with a user-provided goal
destination to PMM Reference Trajectory Generator, and
together with the positions and velocities of other robots, it
is also provided to Reciprocal Velocity Constraint Generator.
The PMM Reference Trajectory Generator applies a point-
mass model minimum-time trajectory generation approach
introduced in [29] for generating a feasible minimum-time
trajectory leading from a current state to a goal destination

4https://drone-remote-id.com/

while respecting given kinematic constraints.
The Reciprocal Velocity Constraint Generator generates a

set of linear reciprocal velocity constraints ensuring mutual
collision avoidance among robots based on the positions and
velocities of other robots obtained either through Commu-
nication Module or estimated from the robot’s sensor data
using an Estimation Module. Given the current position and
velocity of the robot, the set of velocities for optimal recipro-
cal collision avoidance [2] is computed for every neighboring
robot. The individual set of velocities considering avoid-
ance to other robots are then converted to linear constraints
computed in compliance with optimal reciprocal collision
avoidance concept [2]. To cope with the latency of data re-
sulting from communication delays and lower frequencies of
the incoming messages compared to control loop frequency,
the first order linear motion model is applied to predict the
current position of other UAVs based on the most recent
available information.

Unlike MPC-based approaches applying ORCA [1], [24],
the proposed approach misses information about future tra-
jectories, hence it computes velocity constraints only for the
current position and velocity and considers this constraint
for all transition points. This significantly reduces the com-
putational time without negatively affecting the performance
of the method. While applying this constraint on the whole
control horizon of duration preserves the required mutual
collision avoidance guarantees, such approach is unneces-
sarily restrictive. Therefore, we introduce the time validity
of individual velocity constraints equivalent to time after
which the angle between vector representing the relative pose
between robots and vector representing relative velocity of
robots exceeds π

2 .
The generated reciprocal velocity constraints and the ref-

erence trajectory generated by PMM Reference Trajectory
Generator serve as inputs to NMPC Controller generating
control inputs that are passed to Flight Control Unit, which
translates this reference to control commands for individual
rotors. The NMPC Controller is an adaptation of NMPC
control approach [30] enhanced with additional collision
avoidance constraints. The complete set of constraints con-
sists of constraints on quadrotor’s initial state, constraints
corresponding to discretized quadrotor’s nonlinear dynamic
model adopted from [30], constraints on control inputs, and
time-dependent linear velocity constraints for mutual colli-
sion avoidance described above. Given the time validity for
each linear velocity constraint, these constraints are intro-
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Fig. 3: Qualitative comparison of trajectories generated by individual approaches in scenario involving 10 UAVs navigating to antipodal
positions on the circle of diameter 20 m with velocity and acceleration limits 20 ms−1 and 40 ms−1, respectively.

duced in NMPC formulation as time dependent/transition
point dependent variable soft constraints. Such an approach
prevents unfeasibility of the defined problem and preserves
scalability of the proposed approach.

The proposed RVC-NMPC approach was evaluated
through numerous simulations and real-world experiments.
Despite the absence of theoretical guarantees, it demon-
strated its practicality through collision-free navigation in a
three hour long test in an environment with ten robots fol-
lowing random trajectories with velocities and accelerations
up to 25 ms−1, and 40 ms−2, respectively. During this test,
10 UAVs were navigated to more than 50000 goals, travelled
total of 6.28×105 m with an average velocity 5.8 ms−1. The
results show that the proposed approach prevents 100 % of
violations of minimum mutual distance even in such chal-
lenging scenario (see Fig. 4 for detailed results).
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Fig. 4: Histograms of normalized frequencies of minimum mutual
distances among UAVs experienced during continuous high-speed
navigation in constrained area using the proposed approach (blue)
and not applying any collision avoidance mechanism (red).

The performance of the proposed approach was further
demonstrated in a scenario involving 10 UAVs simultane-
ously navigating to antipodal positions on the circle of di-
ameter 20 m (see Fig. 3) with velocity and acceleration
constraints 20 ms−1 and 40 ms−2, respectively. The obtained
results show that the proposed approach reduces the flight
time by more than 11% compared to state-of-the-art dis-
tributed approaches [5], [6], [9], [31] while reaching 100%
success rate. The detailed results are presented in Table I.

The robustness of the proposed approach to latency and
dropouts in obtained state of other UAVs is demonstrated

TABLE I: Comparison of different approaches for the solution of
a simultaneous navigation of 10 UAVs to antipodal positions on a
circle of diameter 20 m. The results are averaged over 100 trials.

Approach
Flight time [s] Vel. [ms−1] Min. dist. [m]

mean std.dev mean std.dev mean min

MADER [6] - per axis 5.31 0.53 4.75 0.17 0.75 0.38
MADER [6] - norm 5.28 0.35 4.70 0.16 0.72 0.51
EGO-SWARM-2 [9] 8.16 0.50 3.61 0.22 0.67 0.47
HDSM [5] - per axis 3.43 0.17 6.96 0.16 0.67 0.57
HDSM [5] - norm 4.46 0.19 4.78 0.18 0.67 0.56
RBL [31] 11.59 0.74 2.54 0.05 0.87 0.63
Proposed 3.07 0.08 7.36 0.06 0.98 0.81
Proposed with drag 3.84 0.06 5.93 0.05 0.98 0.82

through series of simulations with modelled latency, and
decrease in incoming frequency of estimated state of other
UAVs. While the evaluation is performed in simulation, the
modelled errors are emulating real-world conditions resulting
from usage of wireless means of communication or estima-
tion of the state of UAVs using onboard sensors and pro-
cessing. In the following simulations, the collision avoidance
radius of individual robots for generation of velocity con-
straints is set to 2 m with 8 s horizon, and the communication
is asynchronous. The detailed results are presented in Fig. 5.
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Fig. 5: The success rate (shown in colors of the matrix) and mean
minimum mutual distance between UAVs (shown as numbers in
the matrix [m]) under varying delay and frequency of messages ob-
tained from other agents. The results for every delay-frequency pair
are based on 100 flights in scenario involving 4 UAVs navigating
to antipodal positions on the circle of diameter 20 m.
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