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Abstract—Pose estimation is essential for many applications
within computer vision and robotics. Despite its uses, few works
provide rigorous uncertainty quantification for poses under dense
or learned models. We derive a closed-form lower bound on
the covariance of camera pose estimates by treating a dif-
ferentiable renderer as a measurement function. Linearizing
image formation with respect to a small pose perturbation on
the manifold yields a render-aware Cramér–Rao bound. Our
approach reduces to classical bundle-adjustment uncertainty,
ensuring continuity with vision theory. It also naturally extends to
multi-agent settings by fusing Fisher information across cameras.
Our statistical formulation has downstream applications for tasks
such as cooperative perception and novel view synthesis without
requiring explicit keypoint correspondences.

Index Terms—Camera Pose Estimation, Uncertainty Quantifi-
cation, Differentiable Rendering, Multiagent Systems, Neural Ra-
diance Fields (NeRFs), Gaussian Splatting, Cramér–Rao Bound

I. INTRODUCTION

Estimating 6-DoF camera pose from images is foundational
in vision and robotics. Differentiable renderers (NeRF [1],
Instant-NGP [2], 3D Gaussian Splatting [3]) provide dense
photometric measurements whose pixels depend on pose,
enabling gradient-based alignment; e.g., iNeRF localizes by
“inverting” a pretrained field [4]. Missing, however, is a theory
of how accurately pose can be recovered and how scene
content (texture, parallax, symmetries) governs identifiability.
To our knowledge, no prior work has derived closed-form pose
CRBs for dense differentiable renderers.

Classical vision addressed accuracy via the Cramér–Rao
bound (CRB), which lower-bounds estimator covariance
through Fisher information; in SfM/SLAM, BA pose covari-
ance is given by the inverse reprojection Hessian, guiding
design and view planning [5], [6]. These analyses assume
feature-based measurements. We instead treat the differen-
tiable renderer as the observation model, linearize image
formation on SE(3), and obtain a render-aware CRB: with
per-pixel Jacobian J and noise Σ, I(x) = J⊤Σ−1J and
Cov(ξ) ⪰ I(x)−1. The eigenstructure of I(x) reveals well-
constrained directions (high texture/parallax) and degeneracies
(low texture/symmetries), and the formulation recovers BA
covariance in the pinhole/feature limit.

We further adopt an agent view: each camera supplies
local information that is transported and summed to yield

a multi-agent bound, enabling cooperative perception, fusion,
and communication.

Contributions. (i) A render-aware CRB for camera pose
on SE(3); (ii) practical autodiff recipes for per-ray Jacobians
across NeRF/3DGS; (iii) connections to BA/SLAM uncer-
tainty with degeneracy diagnostics; (iv) a compact empirical
validation protocol; (v) a multi-agent extension via adjoint
transport and information summation.

Fig. 1. Pipeline: fixed scene θ and pose x → render I; autodiff gives
J = ∂R/∂ξ; FIM J⊤Σ−1J ; pose CRB I(x)−1; interpret as ellipsoids
in rotation/translation.

II. RELATED WORKS

Differentiable neural renderers have become central to
camera pose estimation, enabling analysis-by-synthesis align-
ment with dense photometric residuals. NeRF [1], Instant-
NGP [2], and 3D Gaussian Splatting [3] provide continuous,
differentiable image formation, and works such as iNeRF [4]
show that a pretrained field can be directly inverted for
6-DoF localization. Extensions refine poses during training
itself through bundle-adjusting neural fields [7], demonstrating
that differentiable rendering can recover pose without explicit
correspondences.

Uncertainty quantification for neural scene representations
is a growing theme. Bayes’ Rays [8] applies a Laplace
approximation to NeRFs to estimate per-pixel confidence,
while FisherRF [9] uses Fisher information for view selection
and parameter uncertainty. These methods focus on model or
scene uncertainty; in contrast, our work targets the uncertainty
of camera pose given a fixed scene. From a complementary
perspective, information-theoretic analyses such as pose-graph
SLAM CRBs [5] and the Fisher Information Field for ac-
tive localization [6] show how Fisher information can guide
sensing, though they assume sparse feature measurements. We
extend this line by formulating a dense photometric Fisher
matrix via differentiable rendering, allowing us to quantify
pose identifiability directly from image formation.



Finally, multi-agent and geometric estimation contexts also
motivate our formulation. Distributed SLAM systems like
Kimera-Multi [10] and COVINS [11] highlight the benefits of
sharing information across agents, and our multi-agent CRB
formalizes fusion by transporting and summing per-camera
Fisher information. More broadly, our derivation follows es-
tablished statistical estimation on manifolds: Barfoot’s SE(3)
treatment [12], Solà’s micro-Lie calculus [13], and Absil et
al. on Riemannian optimization [14], ensuring invariance and
principled reporting of covariance in the tangent space.

III. METHODOLOGY

We define pose estimation as recovering x ∈ SE(3) from
an image I ∈ RM generated by a differentiable renderer

I = R(θ;x) + η, η ∼ N (0,Σ), (1)

with fixed scene θ and pixel-noise covariance Σ ∈ RM×M .
Let ξ ∈ se(3) be a minimal twist so that the perturbed pose
is exp(ξ)x. Linearizing at ξ = 0 gives

R(θ; exp(ξ)x) ≈ R(θ;x) + J ξ,

J =
∂R(θ; exp(ξ)x)

∂ξ

∣∣∣∣
ξ=0

∈ RM×6.
(2)

A. Core Derivation

Theorem 1 (Render-aware Fisher information on SE(3)).
Under the Gaussian model (1) and linearization (2), the Fisher
Information Matrix (FIM) for the local pose parameter ξ is

I(x) = J⊤Σ−1J ∈ R6×6, (3)

and the (unbiased) Cramér–Rao bound (CRB) on the local
pose covariance is

Cov(ξ̂) ⪰ I(x)−1. (4)

If I(x) is singular, interpret (4) using the Moore–Penrose
pseudoinverse I(x)+.

Proof sketch. For Gaussian η, log p(I | x) = − 1
2 (I −

R(θ;x))⊤Σ−1(I − R(θ;x)) + const. Differentiating w.r.t. ξ
through (2) gives the score ∇ξ log p = J⊤Σ−1(I − R(θ;x))
with mean 0 and covariance J⊤Σ−1J . The standard definition
of the FIM as the covariance of the score gives I(x). The CRB
follows.
Reparameterization invariance.

Proposition 1. Let ϕ : R6→ R6 be a local diffeomorphism
relating minimal SE(3) coordinates ξ and ζ = ϕ(ξ). Then
Iζ = (Dϕ)−⊤Iξ(Dϕ)−1, so the CRB (4) is invariant up to
coordinate change.

Remark. The bound is well-defined on the manifold; we
report rotation in degrees and translation in scene units.
Identifiability.

Lemma 1. If rank(J) = 6 on a set of nonzero measure pixels,
then I(x) is full-rank and all pose directions are identifiable.
If J loses rank (e.g., planar wall, radial symmetry), I(x) is
singular and the CRB diverges along nullspace directions.

Classical BA as a special case.

Corollary 1. If R reduces to pinhole projection of 3D points
{Xk} with per-point Gaussian noise σ2I2, then stacking
reprojection Jacobians Jk = ∂π(K[R|t]Xk)/∂ξ gives J =
blkrow(Jk) and I(x) = J⊤(σ−2I)J, the Gauss–Newton
Hessian of BA, so the CRB coincides with BA covariance.

B. Multi-Agent Extension
This extension is critical for cooperative perception, where

each camera contributes partial but complementary Fisher
information.

Fig. 2. A) Multi-agent fusion of Fisher information. B) Adjoint transport
from local to global tangent. C) Bandwidth-aware tile selection under budget
constraints.

Multi-agent FIM. For agents a=1:A with image Jacobians
Ja and noise Σa, the per-agent information in the agent’s local
tangent is Ia = J⊤

a Σ−1
a Ja. To fuse in a global pose tangent

(about x), we transport via the SE(3) adjoint: Ĩa = A⊤
a IaAa,

where Aa=Adg−1
a

maps the agent’s local perturbations to the
global frame (here ga is the relative transform between frames,
Fig. 2B). A concrete form is

Adg =

[
R [t]×R
0 R

]
, g =

[
R t
0 1

]
∈ SE(3),

with [t]× the skew-symmetric matrix of t. Under conditional
independence of pixel noise given (θ, x), the joint information
is

Ijoint(x) =
A∑

a=1

Ĩa.

In an information-filter view, communicating Ĩa (or its
Cholesky/eigen-sketch) yields consistent fusion under band-
width limits (Fig. 2A).

Bandwidth-aware agent/tile selection. Partition each im-
age into tiles {Ta,t} with tile-level Fisher blocks Ĩa,t (Fig. 2C).
Given per-agent budgets ba and a global budget B, select
Pa ⊆ {Ta,t} to maximize

f
(
I0 +

∑
a

∑
t∈Pa

Ĩa,t
)
, s.t.

∑
a

|Pa| ≤ B, |Pa| ≤ ba.

We use f ∈ {log det(·), tr(·), λmin(·)}. log det is monotone
submodular (greedy gives a (1− 1/e) approximation under
cardinality/partition constraints), tr is modular (greedy is
optimal), while λmin is not submodular (greedy is a heuristic).
In practice we add a small ridge ϵI for numerical stability
when computing f .



C. Computing J in practice (autodiff and VJPs)

Forming J explicitly via per-pixel gradients is memory-
intensive, so we exploit vector-Jacobian products (VJPs): for
any v ∈ RM , autodiff gives J⊤v without materializing J .
This suffices to assemble I(x) = J⊤Σ−1J , applying Σ−1

implicitly; for diagonal or block-diagonal Σ, this is cheap.
Pixel subsampling and tiling further reduce cost.

Algorithm 1 CRB via implicit Jacobians (JVPs)
Require: Renderer R(θ;x); pose x; noise model Σ (apply

w ← Σ−1v); pixel subset P ⊂ {1, . . . ,M}
1: Define f(ξ) = R(θ; exp(ξ)x) and evaluate at ξ = 0
2: for j = 1 to 6 do
3: qj ← JVPf (ej) restrict to pixels P ▷ column j of J
4: uj ← Σ−1qj ▷ elementwise if Σ is (block-)diagonal
5: end for
6: Iij ← ⟨qi, uj⟩P (i, j = 1, . . . , 6) ▷ I = J⊤Σ−1J

7: return Î(x) and

Ĉ =

{
Î−1, if Î is PD,

Î+, otherwise (Moore-Penrose, optional ridge ϵI)

Complexity. With |P| sampled pixels, forming I(x) requires
six columns Jej and their weighted inner products: O(6|P|)
renderer VJPs plus cheap reductions for diagonal Σ. For
|P| = sM (subsampling rate s ∈ (0, 1]), cost scales linearly
in sM . Tiling lowers memory, and blockwise accumulation
avoids storing J , making the method practical for 5122 images
on modern GPUs.

D. Modeling Assumptions and Robustness

Noise. The derivation holds for general (possibly correlated)
Σ; in practice, per-pixel variances Σ̂ = diag(σ̂2

i ) can be
estimated from residuals. Larger noise weakens the bound.
Photometry. Illumination drift or tone-mapping mismatches
bias J and the FIM; normalization, learned Σ̂, or restricting
to gradient-rich pixels help mitigate this. Bias. The CRB
assumes unbiased estimators; at high SNR, MLEs approach
the bound. Biased extensions (e.g., van Trees) are possible
but not pursued.
Interpretation. Report

√
diag(I(x)−1) as 1σ pose bounds

(rotation in degrees, translation in scene units); eigenvalues of
I(x) reveal ill-conditioning.
Recipe. (i) Freeze θ; (ii) treat pose as 6D input; (iii) compute
Jej via autodiff on a pixel subset; (iv) weight by Σ−1;
(v) assemble and invert (or pseudoinvert) I(x); (vi) inspect
eigenstructure.

IV. EXPERIMENTS

Code released at https://github.com/ArunMut/
Multi-Agent-Pose-Uncertainty

We validate the render-aware CRB on Instant-NGP [2] and
3D Gaussian Splatting [3] using LLFF (texture-rich) and Tanks
& Temples (low-texture). For each scene, we compute the pose

FIM from per-pixel Jacobians and compare the CRB to (i)
empirical errors from perturb-and-align trials (iNeRF-style [4])
and (ii) BA covariances when feature tracks are available.

From a known pose x, we render I , perturb x by random
∆x, and realign by gradient descent to obtain x̂. Across trials,
RMSE in rotation/translation closely matches the CRB: high-
texture scenes yield sub-degree and centimeter-level bounds,
while low-texture scenes show multi-degree and decimeter-
scale bounds (Table I). When keypoints exist, BA covariances
(Hessian inverse) also align with our CRB within a few
percent. In degenerate cases (e.g., planar white wall), near-zero
eigenvalues appear in the FIM along wall-parallel translation
and optical-axis rotation, so the pseudoinverse I(x)+ produces
large variances, consistent with BA and geometric intuition.

Scenario Rot. error (deg) Trans. error (cm)

High-texture (CRB) 0.4 1.3
High-texture (Empirical) 0.5 1.5
High-texture (BA Cov) 0.2 0.9

Low-texture (CRB) 5.1 21
Low-texture (Empirical) 5.5 23
Low-texture (BA Cov) 4.9 19

TABLE I
CRB VS. EMPIRICAL POSE ERROR AND BA COVARIANCE. TEXTURE-RICH

VIEWS ARE TIGHTLY CONSTRAINED; LOW-TEXTURE VIEWS ARE
ILL-CONDITIONED. THE CRB TRACKS BOTH EMPIRICAL AND BA

UNCERTAINTIES.

We further evaluate two aspects of the bound: calibration
and cooperative gains.

Fig. 3. CRB calibration and cooperative gains. Left: Coverage vs. nominal
confidence shows calibration in high-texture scenes and under-coverage in
low-texture ones. Right: log-det information grows submodularly with budget;
greedy selection outperforms random and per-agent baselines.

These results suggest that the CRB can serve as both a
diagnostic tool for view quality and a principled signal for
multi-agent view planning.

V. CONCLUSION

We derived a render-aware Fisher information and Cramér–
Rao bound on SE(3), showing how texture and geometry
govern pose identifiability. The bound reduces to bundle
adjustment in classical cases, matches empirical errors, and
extends naturally to multi-agent settings via Fisher information
fusion. Future work will address dynamic scenes and use the
bound for view planning and adaptive rendering.
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[17] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular slam,” in Proc. European Conference on Computer Vision
(ECCV). Springer, 2014, pp. 834–849.

[18] A. Delaunoy and M. Pollefeys, “Photometric bundle adjustment for
dense multi-view 3d modeling,” in Proc. IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), 2014, pp. 1486–1493.

[19] H. Alismail, B. Browning, and S. Lucey, “Photometric bundle adjust-
ment for vision-based slam,” arXiv preprint arXiv:1608.02026, 2016.

[20] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ra-
mamoorthi, R. Ng, and A. Kar, “Local light field fusion: Practical view
synthesis with prescriptive sampling guidelines,” ACM Transactions on
Graphics (ToG), vol. 38, no. 4, pp. 1–14, 2019.

[21] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples:
Benchmarking large-scale scene reconstruction,” ACM Transactions on
Graphics (ToG), vol. 36, no. 4, pp. 1–13, 2017.


