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Abstract— This paper presents a novel object detecting and
positioning approach for robotic systems utilizing a single
monocular camera. The proposed system is capable of detecting
a diverse range of objects and estimating their positions without
requiring fine-tuning for specific environments. The system’s
performance was evaluated on the universal aerial-ground
robot ”MorphoGear” through a simulated search-and-rescue
scenario, where the robot successfully located a robotic dog
while an operator monitored the process. This work contributes
to the development of intelligent, multimodal robotic systems
capable of operating in unstructured environments.

I. INTRODUCTION

Robotics has experienced rapid advancements in recent
years, with Vision-Language Models (VLMs) emerging as a
powerful tool for mission execution based on RGB images.
Since VLMs require only an image and a text prompt as
input, they eliminate the need for expensive and specialized
sensors such as LiDARs and depth cameras. This simplicity
and cost-effectiveness suggest that vision-language-based
control will play a crucial role in the future of robotics,
with cameras becoming the primary sensor for most robotic
systems. This paper introduces a mapping method for a uni-
versal air-ground robot using a single camera. Our approach
enables mission planning and easy VLM integration while
reducing communication needs.

Unlike traditional approaches (point clouds, octomap [1],
mesh) that preserve shape, our method retains semantic
meaning. This enables high-level reasoning and rapid en-
vironment scanning. While less accurate, experiments (Sec-
tion V) show precision is sufficient for global navigation,
serving as a cost-effective alternative or LLM-augmentation
for camera-based robots.

Our technique handles object recognition, segmentation,
and depth estimation. By using common objects with stan-
dard dimensions as references, we can scale the map and
estimate distances.

We prioritize semantic understanding over precise shape or
color. Recognizing an object’s purpose and context allows a
robot to predict interactions, enabling robust navigation from
minimal data, much like human reasoning.

II. RESEARCH BACKGROUND

Monocular depth estimation is key for robotic 3D per-
ception. ZoeDepth [2] advances this via hybrid relative and
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Fig. 1. Experimental setup. The mission is to overcome obstacles and
search for the hidden robot.

metric depth training. Similarly, Depth-Anything [3] offers a
robust, zero-shot, scalable framework.

For detection, YOLO [4] and Detectron2 [5] are fast but
limited to predefined classes. In contrast, zero-shot detec-
tors like Grounding DINO 1.5 Pro [6], DINO X [7], and
OWLV2 [8] recognize open-vocabulary objects, making them
more suitable for our framework.

Image segmentation from models like the Segment Any-
thing Model (SAM) [9] and SAM v2 [10] provides object
boundaries for depth scaling and planning. With DINO
1.5 [11], these models enable training-free, semantic-aware
perception, prioritizing high-level reasoning over geometric
precision.

Unlike traditional mapping (e.g., SLAM point clouds),
which loses semantics, modern zero-shot models retain
spatial and semantic data efficiently. While VLMs like
Molmo [12] and ChatGPT [13] integrate vision and lan-
guage, they lack 3D reasoning. Vision-Language-Action mo-
dels (RT-1 [14], PaLM-E [15]) address this but need extensive
task-specific data.

For path planning in aerial-ground robots (AGRs), HE-
Nav [16] and OMEGA [17] offer solutions but require careful
selection of safe take-off and landing points [18].

III. SYSTEM OVERVIEW

Our system consisted of three main parts, a robot, a
laptop with a control interface, and an environment with a
localization system. All calculations were performed either
on the robot (for control) or on a personal computer (for
mapping).



Fig. 2. Aerial-Ground Vehicle MorphoGear.

A. MorphoGear: Aerial-Ground Robot

MorphoGear (Fig. 2) is an unmanned aerial-ground vehicle
(AGV) with morphogenetic gear for terrestrial/aerial motion
and future object manipulation. It overcomes non-traversable
obstacles and can stop for data collection, enabling long-term
operation impossible for drones.

Hardware includes an OrangePi 5b, OrangeCube
flight controller, STM32-based limb controller, and ELP-
USBFHD05H camera. Software uses ROS2 Iron with
Python nodes and mavros. Limb motion generation
continues previous work [19], moving scripts from Unity to
internal asynchronous calculation. Ardupilot v4.4.1 runs on
Ubuntu Server 22.04.

B. GUI: Ground Station

The ground station is a laptop (Intel i7-1165G7, 16GB
RAM) running Unity and Python. We developed a digital
twin for simulation and control, using ROS-TCP-Connector
for ROS2 Iron communication. We built an experimental
room in Unity with a robot digital twin featuring bidirectional
communication (commands out, state in). The operator has
free movement around the scene (Fig. 3).

1) Path planner: We developed an Aerial-Ground A* al-
gorithm [20]. The interface visualizes nodes: red (occupied),
yellow (dangerous), blue (free). Costs vary by layer: ground
(none), first layer (high for takeoff/landing), upper layers
(normal). A mission manager handles motion-type switching
and node conflicts.

2) Object recognition script: A Python script processes
single images for object recognition, segmentation, depth
completion, and distance estimation, outputting object names
and positions.

3) Object spawner: Detected objects are saved to JSON.
An Object Spawner in Unity instantiates corresponding mo-
dels from a library into the global frame, preserving semantic
meaning and approximate dimensions while improving ren-
dering performance.

Fig. 3. Virtual simulation and visualization for MorphoGear.

C. Environment

Experiments were in a 6x10x4m room with a 5x8x3m
planning grid, containing desks, chairs, suitcases, and other
objects, using a VICON system for localization.

IV. ALGORITHM OF MAPPING

Effective navigation of a ground-aerial robotic system
requires a map that accurately represents key environmental
elements. The system must detect objects of interest and
estimate their positions based on their known geometric
dimensions. Once the 3D objects are positioned within the
scene, the robot generates and follows a path to a user-
defined destination.

The proposed system (Fig. 4) operates using a single
monocular RGB image as input. During development, mul-
tiple object detection models, including OWLv2, OWL-ViT,
and DINO-X, were evaluated. Among these, OWLv2 and
Grounding DINO 1.5 Pro demonstrated the best performance
in our testing environment (Section V) and were selected
for implementation. Given the known object dimensions,
camera intrinsics, and the bounding box obtained from the
object detector, the object’s distance is estimated using the
following formula:

d = f
hm

hpx
, (1)

where f is the focal length, hm is the object’s real-world
height (in meters), and hpx is its height in pixels.

To refine the distance estimates, we use Depth Anything v2
in combination with Segment Anything v2, leveraging a deep
learning-based approach. A segmentation mask generated by
Segment Anything is applied to the depth map, and the me-
dian depth value within the masked region is extracted. The
final object distance is calculated as a weighted average of
the two estimates: 80% from the geometry-based method and
20% from the depth-based method. When object dimensions
are unknown, only the depth-based estimation is used.

The processed object positions are then packaged into
a JSON file and transmitted to a Unity-based simulation
environment. Within this virtual environment, 3D models of
the detected objects are placed at their corresponding coor-
dinates. A path planner then generates a trajectory through



Fig. 4. The system architecture of the mapping pipeline.

Fig. 5. Accuracy of position estimates.

the environment, which is subsequently sent to the robot.
The onboard path tracking system of the aerial-ground robot
follows this trajectory to reach the final destination.

V. EXPERIMENT

We evaluated our system in a simulated search and rescue
scenario where the MorphoGear robot had to locate a Unitree
Go1 robotic dog hidden behind obstacles. Performance was
assessed via object detection ratio, position accuracy, and
computation time.

A. Detection Model Choice

We evaluated state-of-the-art models (Table I). Grounding
DINO 1.5 Pro achieved the best balance with a 97.4%
detection ratio and moderate computation time, and was
selected for experiments. Pose estimation accuracy (Fig. 5)
confirmed this choice.

TABLE I
COMPARISON OF DETECTION MODELS.

Model Detection Ratio
(%)

Calculation Time
(sec)

Dino-X 90.4 7.26
Grounding Dino 1.6 pro 93.2 7.07
Grounding Dino 1.5 pro 97.4 7.34
Owl v2 69.5 13.21
Owl-ViT 37.5 4.77

B. Experimental Setup and Procedure

A test case evaluated system capabilities (Fig. 1). Obsta-
cles were arranged linearly, dividing the area and hiding a
robotic dog. The task required detecting obstacles, planning
a path, navigating past them (validating locomotion transi-
tions), and locating the target.

The procedure began with the robot capturing an image.
The mapping pipeline processed this to compute object
positions for the Unity GUI. An obstacle grid was con-
structed, and an A* algorithm planned a trajectory (Fig. 3).
The pipeline (Fig. ??) integrates depth and object size to
improve pose estimation over noisy point clouds, enabling
safer navigation.

C. Results and Limitations

The system detected 97.4% of target objects. The average
object center position error was 13.6 cm compared to VICON
ground truth. Scene reconstruction took 7.3 seconds on
average. The robot successfully navigated obstacles to locate
the target. Limitations include reduced accuracy for occluded
objects, inaccuracies with irregular shapes/orientations, and
a lack of real-time processing.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a mapping approach for a
universal aerial-ground robotic system utilizing a single
monocular camera. The proposed system demonstrated the
ability to detect a diverse range of objects and estimate
their positions without requiring fine-tuning for specific en-
vironments. Experimental validation was conducted through
a simulated search-and-rescue scenario. The system achieved
an object detection rate of 97.4%, with an average position
estimation error of 13.6 cm and an average processing time
of 7.34 sec per image.

While the system performed well in controlled laboratory
conditions, several areas for improvement remain. Incorpo-
rating orientation estimation into the pipeline will lead to
more accurate position calculations, particularly in cluttered
environments. Additionally, occlusion remains a challenge,
as partially visible or obstructed objects often result in incor-
rect position estimates. Future work will explore hierarchical
and deep learning-based approaches to mitigate these issues.

Another crucial direction for future research is integrating
the proposed mapping system with vision-language models
(VLMs). By providing VLMs with structured scene infor-
mation from our mapping pipeline in addition to the raw
monocular image, we aim to enhance their spatial under-
standing and cognitive reasoning capabilities. This integra-
tion is expected to significantly improve the system’s ability
to interpret complex environments, leading to better decision-
making in real-world applications.

Ultimately, this work contributes to the development of
intelligent, multi-modal robotic systems capable of operating
in unstructured environments. By addressing the identified
limitations and expanding the system’s capabilities, we move
closer to achieving robust, autonomous aerial-ground navi-
gation and perception for real-world deployment.
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