Online automatic code generation for robot swarms:
LLMs and self-organizing hierarchy

Weixu Zhu
IRIDIA
Université libre de Bruxelles
Brussels, Belgium
0000-0002-0329-9592

Abstract—Our recently introduced self-organizing nervous sys-
tem (SoNS) provides robot swarms with 1) ease of behavior design
and 2) global estimation of the swarm configuration and its
collective environment, facilitating the implementation of online
automatic code generation for robot swarms. In a demonstration
with 6 real robots and simulation trials with >30 robots, we
show that when a SoNS-enhanced robot swarm gets stuck, it can
automatically solicit and run code generated by an external LLM
on the fly, completing its mission with an 85% success rate.

I. INTRODUCTION

Swarm robotics research has demonstrated that many so-
phisticated behaviors with a large number of robots can be
accomplished in a fully self-organized manner [1], but these
fully self-organized behaviors have been slow to transfer to
real applications. One reason for this is the fact that robots in
a swarm are programmed at the individual level but the desired
behavior occurs at the group level, and the design of fully self-
organized group behaviors is often analytically intractable [2],
[3], requiring extensive trial-and-error testing.

The long trial-and-error design process associated with
self-organized behaviors is both a motivating factor and a
complicating factor for automatic design. Because of the many
testing trials typically required, automatic design for self-
organized robot swarms is usually conducted offline [4], [5],
and even progress made on online methods such as embodied
evolution have often relied heavily on simulation [4]. Besides
the need for many trials, a second reason why offline methods
remain common is the difficulty for a robot swarm to self-
assess its own global performance. Robots in a self-organized
swarm typically estimate or receive only their own individual
states and the states of a few nearby robots. Using such
local information, reaching a consensus on estimated global
performance would require long convergence times impractical
for most tasks.

The inaccessibility of global information in a fully self-
organized robot swarm also presents a substantial challenge
for using large language models (LLMs) to generate code on
the fly. Recent work has suggested, for example, using com-
binations of individual self-diagnosis and local peer-diagnosis

Mary Katherine Heinrich and Marco Dorigo acknowledge support from the
Belgian FR.S.-FNRS, of which they are a Research Associate and a Research
Director respectively.

Marco Dorigo
IRIDIA
Université libre de Bruxelles
Brussels, Belgium
0000-0002-3971-0507

Mary Katherine Heinrich
IRIDIA
Université libre de Bruxelles
Brussels, Belgium
0000-0002-1595-8487

for robots in a swarm to validate code generated by LLMs [6].
However, this does not resolve the difficulty of how to design
individual behaviors that will result in the desired group
behavior, without having access to global information.

In this paper, we propose that our recently introduced ap-
proach to self-organizing hierarchy—the self-organizing ner-
vous system (SoNS) [7]—can greatly simplify the implementa-
tion of online automatic code generation in robot swarms using
LLMs. Using SoNS, robots can form and dissolve temporary
centralized control structures in a self-organized manner [7].
Effectively, SoNS is a kind of middleware for robots to
self-organize temporary, dynamic hierarchies with their peers,
providing robot swarms with some useful functionalities: using
SoNS, robots can coordinate their collective sensing, actuation,
and decision-making activities in a temporarily centralized
way, without sacrificing the scalability, flexibility, and fault
tolerance benefits normally associated with self-organization.
Because the SoNS allows a whole robot swarm to be pro-
grammed as if it were a single robot with a reconfigurable
body [7], requests to an LLM for new code can be much
more straightforward than what would be required in robot
swarms with flat (i.e., single-level and fully decentralized)
system architectures.

We propose that the SoNS [7] is useful for online LLM-
based generation of code for robot swarms in at least the
following two ways:

1) Ease of behavior design. Because the self-organizing
hierarchical structure of the SONS separates global actu-
ation from local actuation, an LLM can provide code for
a desired global behavior directly, rather than attempting
to construct a local behavior that when performed by
many interacting robots will result in the emergence of
the desired global behavior.

2) Global estimation of swarm and environment. Be-
cause sensor information is forwarded upstream in the
self-organized network of a SoNS, culminating at an
interchangeable brain robot, the brain robot can provide
an LLM with an estimate of the global configuration
of the whole swarm and its sensed environment (with a
maximum update delay of n + 1 steps, where n is the
depth of the rooted graph).

obstacles

robots

robots get stuck
and request help

robots avoid
second obstacle

(a) Demo with real robots. Includes 4 ground robots, 2 tethered aerial robots [out of frame], and 2 (b)
obstacles. The real robots start the demo with the same software that the robots in a simulated trial

start with, using the setup from [7].

robots get stuck, request help

robots use newly generated
code to avoid first obstacle

robots surpass obstacles
and complete mission

Simulation trial.
25 ground robots, 9 aerial
robots, 15 obstacles.

Fig. 1: Key frames from videos of the demo with real robots and an example successful simulation trial. Robots begin with no code
for obstacle avoidance; they simply move forward while remaining in a square formation shape. When the ground robots become physically
obstructed, one robot sends its available information to an external LLM, with a generic request for new code for all robots in the swarm.
Once the new code has been received and all robots in the swarm have updated their programs in a self-organized manner, the ground robots

successfully circumvent the obstacles.

Number of trials
N

Number of trials
N

1 1

O b 1O B (D B D A AD o oD > D DO 0
T S S R BB O Failed
S i i e O A A O IO SN

Successful trials: Elapsed time (s)

Fig. 2: Task duration using online LLM-based code generation,
20 trials. In successful trials, the elapsed time spans from when the
first robot reaches the first obstacle, to when the last robot surpasses
the last obstacle. Constituent steps include: 1) robots try and fail
repeatedly to move forward; 2) robots send request for help to LLM;
3) robots receive and execute generated code; 4) robots get unstuck
and surpass the obstacles, thus completing the task. Out of 20 trials,
robots failed to complete the task in three (red bar).

II. RESULTS AND DISCUSSION

In proof-of-concept demonstrations, we show that a SONS-
enhanced robot swarm can automatically solicit and run code
generated online using a generic web API to an external LLM.
The mission goal is simply to move forward while maintaining
a square formation shape. At the start of a trial, the swarm has
no code for obstacle avoidance and no a priori knowledge
of the locations of obstacles. If the swarm gets stuck and
cannot progress with its mission, the current SONS-brain robot
initiates a conversation with the LLM, sending the LLM all the
basic information it has access to (about itself, the hierarchical
organization of the swarm’s actuation, the mission goal, and

the environment, see Alg. 1 Methods), then sends all its current
sensor information to the LLM along with a generic request
for help. The SoNS-brain then updates its mission-specific
program with the generated code returned by the LLM and
sends the updated program to the robots it is directly connected
to, so that the generated code will be spread to all robots in the
swarm in a self-organized manner. The swarm then continues
operation, and if it becomes stuck again, again requests help
from the LLM, until the mission is complete.

We demonstrate online LLM-based generation of code in
heterogeneous aerial-ground robot swarms, as follows:

o 1 demonstration with 6 real robots, 4 ground robots
and 2 aerial robots in an environment with 2 unknown
obstacles (see Fig. 1a); and

o 20 repetitions in simulation with 34 robots, 25 ground
robots and 9 aerial robots in an environment with 15
unknown obstacles (see Fig. 1b), with some variety in
the algorithms returned by the LLM (see Alg. 2 Results)
and an 85% mission success rate (see Fig. 2).

We use the same robots and experiment setups as [7], except
that in this paper the aerial robots are tethered to the ceiling
in the real-robot demo; for details on the robots, experiment
setup, and the SONS approach and algorithms, please see [7].
For details of the robots’ program that are relevant to the
LLM conversation, we provide the pseudocode (see Alg. 1
Methods). For the external LLM, we use DeepSeek R1 [8]
over the OpenRouter API' for interfacing with LLMs over a
single endpoint, and the code requested from the LLM was
specified to be in the Lua programming language. The results

Thttps://openrouter.ai/docs/quickstart

Algorithm 1 - Methods: Program of robot r; for online
code generation. Functions for a robot to independently initiate
a conversation with DeepSeek R1 using the OpenRouter API and
request new code if the swarm gets stuck during operation. For
definitions of SoNS variables, see [7].

Algorithm 2 — Results: Example code generated online. Algo-
rithms returned by DeepSeek R1 during two example trials. Note that
all replies received from DeepSeek R1 during the trials also included
a preceding qualitative description of the code. For definitions of
SoNS variables, see [7].

1: function PREPARECONVERSATION

2: declare String as “I am a leader of a swarm, can you write some lua
program to control the swarm for me?”

3: append description of the: SONS context (vFOCAL, qylLOCAL |4, GLOBAL
wOLOBAL yelocity components), robot capabilities (differential drive,
relative coordinate frame, sensing capabilities), known environment com-
ponents (dimensions of the robots and potential obstacles, desired safety
distance to an obstacle), mission goal (move forward at a desired speed),
and code format (functions needed and example of overall format)

4: end function

5: function REQUESTHELP

6: append positional information of all obstacles and all robots detected
by robot r; to String
7 append “There seems to be something wrong, can you check what

happened and improve my code?” to String
8: send String to OpenRouter API endpoint for LLMs
9: end function

10: function MAIN
11: initiate SoNS

12: PREPARECONVERSATION

13: loop MISSION

14: function MISSION

15: Move forward at |v| target speed while maintaining formation

16: if robot r; is the current SONSBRAIN then

17: if robot r; has stopped moving forward then

18: TIMER <— TIMER +1

19: end if

20: if TIMER > 67 then

21: REQUESTHELP

22: wait for reply from the LLM

23: extract generated code from the reply

24: update MISSION program with new code

25: send updated MISSION program to neighbor robots

26: end if

27: else if a new MISSION program is received from a neighbor robot
then

28: update MISSION program with new code

29: send updated MISSION program to neighbor robots

30: end if

31: end function

32: end function

data (including videos of all trials and all LLM conversation
logs) are available in an open-access online repository?.
Although the robots provided context about their operation
and their current sensor information to the LLM, the request
they made to the LLM was fairly open-ended: “There seems
to be something wrong, can you check what happened and
improve my code?” (see Alg. 1 Methods). In the 20 simulation
trials, there was some variety in the code the LLM returned
(see examples of two differing algorithms returned by the
LLM in Alg. 2 Results), with some strategies enabling the
robots to complete the task more quickly (see Fig. 2). In the
three trials that we consider unsuccessful (see Fig. 2), the
LLM returned code that removed mechanisms that enabled the
current SoONS-brain to detect when other robots in the swarm
were stuck, and thus some robots were left behind while

Zhttps://doi.org/10.5281/zenodo.17257762

Example 1

1: function MISSION

2 for each obstacle detected by robot r; do

3 if detected distance to the obstacle is < 05 then

4: generate v-OCAL wlOCAL away from the obstacle

5: if |0 — x| < 05 for the component of v-°A then

6: update v-°%L to increase |0 — z|

7 > due to using differential drive robots
8

: end if

9: end if

10: end for

11: if robot r; is the current SONSBRAIN then

12 MOVEFORWARD(vCLOBAL | q4yGLOBAL)

13: send updated vCOLOBAL qGLOBAL o children robots

14: end if

15: end function
Example 2

16: function MISSION

17: for each obstacle detected by robot r; do

18: if detected distance to the obstacle is < 02 then

19: generate vOCAL | qLOCAL away from the obstacle
20: end if
21: end for
22: if robot 7; is the current SONSBRAIN then
23: if no obstacles are in front within detected distance 03 then
24: MOVEFORWARD(vOLOBAL | qyGLOBAL)
25: send updated vOLOBAL qGLOBAL o children robots
26: else
27: generate vOLOBAL qOLOBAL towards side with fewer obstacles
28: MOVEFORWARD(vOLOBAL | GLOBALY at reduced speed
29: send updated vCOLOBAL qyGLOBAL o children robots
30: end if
31: end if

32: end function

the rest completed the mission. Future work could investigate
more stringent separation of static code and update-able code,
especially when the safety requirements are more complicated
than the simple safety distances used in this paper. Also, in
this paper, robots requested help anytime they got stuck and
the behaviors the LLM returned were simple. Future work
could study more principled approaches to requests for help
and more complicated tasks.

REFERENCES

[1] M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future of
swarm robotics,” Science Robotics, vol. 5, no. 49, 2020.

[2] H. Hamann, Swarm robotics: A formal approach. Springer, 2018.

[3] M. Brambilla, E. Ferrante et al., “Swarm robotics: a review from the
swarm engineering perspective,” Swarm Intelligence, vol. 7, 2013.

[4] G. Francesca and M. Birattari, “Automatic design of robot swarms:
achievements and challenges,” Front. in Robot. and Al, vol. 3, 2016.

[5] K. Hasselmann, A. Ligot et al., “Empirical assessment and comparison
of neuro-evolutionary methods for the automatic off-line design of robot
swarms,” Nature communications, vol. 12, no. 1, 2021.

[6] V. Strobel et al., “LLM2Swarm: robot swarms that responsively reason,
plan, and collaborate through LLMSs,” preprint arXiv:2410.11387, 2024.

[71 W.Zhu, S. Oguz, M. K. Heinrich et al., “Self-organizing nervous systems
for robot swarms,” Science Robotics, vol. 9, no. 96, 2024.

[8] D. Guo et al., “DeepSeek-R1 incentivizes reasoning in LLMs through
reinforcement learning,” Nature, vol. 645, no. 8081, 2025.

